Mechanisms of lampricide toxicity

Sea lamprey invaded the Great Lakes in the early 20th century, and continue to threaten populations of native fishes. Control of these parasitic invaders involves regular application of specialized pesticides - TFM and niclosamide - to nursery streams containing lamprey larvae. 

TFM, and likely niclosamide, works by short-circuiting tissue mitochondria. Treated larvae exhaust energetic stores and may experience oxidative stress. The full toxic effects of these chemicals is an area of active investigation.


My postdoctoral work investigates how niclosamide and TFM-niclosamide mixes affect the mitochondria of native fish and sea lamprey. What is the mechanism of toxicity of these agents, and what does it have to do with oxidative stress?


Does hypoxia pattern matter?

Periods of low oxygen are a fact of life for many fishes, and physiologists have a good understanding of how fish cope with stable, prolong periods of low oxygen. However, we have much poorer understanding of how fish cope with repeated cycles between low and high oxygen, even though we know so called patterns of 'intermittent hypoxia' are very common in the wild. 


My PhD thesis investigated how killifish cope with low oxygen, and how these fish use different strategies to deal with daily cycles of hypoxia-reoxygenation compared to constant exposure to low oxygen conditions.

Key papers in this research area:

The pattern of hypoxia exposure influences the mechanisms of hypoxia acclimation in killifish


Intermittent hypoxia and constant hypoxia require distinct metabolic coping strategies in killifish

Interspecific variation in hypoxia tolerance and hypoxia acclimation responses in killifish from the family Fundulidae

Hypoxia acclimation alters reactive oxygen species homeostasis and oxidative status in estuarine killifish (Fundulus heteroclitus)

killifish in respirometer jpg.jpg

Other projects

I'm broadly interested in how animals, especially fish, cope with both natural and human-generated environmental challenges. Check out my Academic Publications to learn more about the cool side projects I've worked on!